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MODELO HIDROLOGICO DISTRIBUIDO  TETISMODELO HIDROLOGICO DISTRIBUIDO  TETIS

Modelo Lluvia-Escorrentía, distribuido de tipo conceptual con parámetros 
físicamente basados, desarrollado por el IIAMA-UPV (www.iiama.upv.es). físicamente basados, desarrollado por el IIAMA UPV (www.iiama.upv.es). 

 Conceptualización VerticalConceptualización Vertical: Son seis tanques de almacenamiento 
conectados entre sí  El flujo entre los tanques es función del agua conectados entre sí. El flujo entre los tanques es función del agua 
almacenada en cada tanque. 
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6 almacenamientos ó tanques:6 almacenamientos ó tanques:6 almacenamientos ó tanques:6 almacenamientos ó tanques:

 En Ladera:
 Manto de nieve
 E táti b t i i i l Estático: abstracc iniciales + agua

capilar d suelo en zona de raíces
 Subsuperficie del suelo
 Gravitacional del suelo superior Gravitacional del suelo superior
Acuífero
Cauce
=>=>
6 variables de estado (Hi)
5 flujos de salida de tanque (Yi)
5 nudos de control:

1 fl j i t (X0)1 flujo input (X0)
5 flujos salida (Xi)

La función que relaciona el flujo con estas variables de estado depende del esquema La función que relaciona el flujo con estas variables de estado depende del esquema 
conceptual adoptado del tipo de tanque y de las características morfológicas de la celda econceptual adoptado del tipo de tanque y de las características morfológicas de la celda e
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conceptual adoptado, del tipo de tanque y de las características morfológicas de la celda e conceptual adoptado, del tipo de tanque y de las características morfológicas de la celda e 
hidrológicas del suelohidrológicas del suelo



Conceptualización HorizontalConceptualización Horizontal::

 Todas las celdas drenan hacia la celda aguas abajo hasta que alcancen una 
ócelda con un cauce definido en que se realiza la traslación del flujo utilizando 

las características geomorfológicas combinadas con la onda cinemática 
“MOCG”.

 Propagación de la
Escorrentía: 
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 Problemas en modelos distribuidos: Problemas en modelos distribuidos: 
 Calibración de un elevado número de parámetros en cada celda a partir del 

hidrograma en la salida de la cuenca.

Solución: Estructura Separada del Parámetro Efectivo (Francés et al., 2007)

CalibraciónCalibración
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CALIBRACION AUTOMATICA de FCCALIBRACION AUTOMATICA de FC

T ti l t t l it d ti i ió (Sh ffl d C l E l ti U i it fTetis, emplea un potente algoritmo de optimización (Shuffled Complex Evolution - University of 
Arizona), eficiente para calibrac de modelos lluvia-escorrentía, (Eckhardt y Arnold, 2001; Madsen, 2000; Thyer et al., 

1999; Boyle et al., 2000; Yapo et al., 1998; Gan y Biftu, 1996; Duan et al., 1994 y Sorooshian et al., 1993).

Funciones objetivo: 

Factores Correctores a Calibrar:
 Almacenamiento estático máximo: FC1 Hu
 Factor de vegetación para la ET: FC λ Factor de vegetación para la ET: FC2 λv

 Infiltración (tasa cte.): FC3 Ks
 Escorrentía directa (embalse lineal): FC4 vladera

 Percolación (tasa cte.): FC5 Kp
 Interflujo (embalse lineal): FC6 Ks
 Pérdidas subterráneas (tasa cte.): FC7 0,1 Kp
 Flujo base (embalse lineal): FC8 Kp
 Velocidad en cauces: FC v
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 Velocidad en cauces: FC9 vcauces



LUGAR DE ESTUDIO. LUGAR DE ESTUDIO. 

 Area de 21434 km2. 

S t i ll i d ltSe caracteriza por lluvias de muy alta 
intensidad y corta duración de origen 
convectivo debido al fenómeno llamado 
“gota fría”. 

Deta l le Observado
Estaciones 155
Celdas  del  grid
Promedio 71.15
Mínimo 28 08
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Mínimo 28.08
Máximo 381.32
Desv. Stand 20.35



INFORMACION  EMPLEADAINFORMACION  EMPLEADA

 SAIH Win: Sistema Automático de 
Información Hidrológica
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 Información cartográfica con Información cartográfica con 
tamaño de pixel 500 x 500, 
procesamiento en ArcGIS para 
generar mapas en formato que se 
ajusten al modelo hidrológico:

MED
Celdas acumuladas
Dirección del flujo
Pendiente del terreno
Velocidad en ladera
Parámetros hidrológicos
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Comparación ETo Diarias Hargreaves-Penman-Monteith. 2000-2009

y = 0.8815x + 0.4115
R² = 0.8617
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Fichero INPUT y OUTPUT con Información Hidrológica: P, Q, ETP, Embalses (Qentrada, Qsalida, Volúmenes)
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Condiciones antecedentes de humedad:Condiciones antecedentes de humedad:Condiciones  antecedentes de humedad:Condiciones  antecedentes de humedad:
Calentamiento
Recirculación 
Calibración
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¡¡¡¡¡ TIEMPO !!!!!!!¡¡¡¡¡ TIEMPO !!!!!!!

Recomendación Calibración:

Calibrar el flujo base
Cuadrar los volúmenes : volumen observado y simulado (%Error en Volumen) Sensible a condiciones iniciales (H1 H4 H5)
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Cuadrar los volúmenes : volumen observado y simulado (%Error en Volumen).  Sensible a condiciones iniciales (H1, H4, H5)
Dejar para el final los  Qpicos (Indice de Nash)
 Calibración automática
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Problema equifinalidad: conjuntos diferentes de parámetros pueden ser óptimos => juicio del 
experto y retoque:
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p y q
 Calibración manual posterior y/o
 Establecimiento de rangos iniciales de búsqueda



1. Calibración en 1. Calibración en PajaroncilloPajaroncillo: Julio 2002 : Julio 2002 –– Julio 2003 Julio 2003 
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2.  Validación Temporal en 2.  Validación Temporal en PajaroncilloPajaroncillo::
Marzo 2000 Marzo 2000 –– Octubre 2009 Octubre 2009 
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3. Validación Espacio Temporal en Alarcón:3. Validación Espacio Temporal en Alarcón:
Febrero 2002 Febrero 2002 –– Octubre 2009 Octubre 2009 
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4. Validación Espacio Temporal en Contreras:4. Validación Espacio Temporal en Contreras:p pp p
Marzo 2000 Marzo 2000 –– Octubre 2009 Octubre 2009 
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CONCLUSIONESCONCLUSIONES

 Fundamental para la calibración de modelos distribuidos la separación de los 
parámetros efectivos en dos componentes:   Estimación previa de parámetros: mapas

F t d ió l b l lib

CONCLUSIONESCONCLUSIONES

Factores de corrección globales a calibrar

 El modelo distribuído permitió comprobar el modelo en escenario distintos al de 
calibración: 

Validación en el tiempoValidación en el tiempo
Validación en el espacio o espacio-tiempo

 El modelo permitió resolver el problema del estado inicial de humedad 
(calentamiento, recirculación, calibración).(ca e ta e to, ec cu ac ó , ca b ac ó )

 El mejor rendimiento del modelo se obtuvo con la calibración en Pajaroncillo (julio 
2002 a julio 2003), siendo los resultados, 0.874, -2.4% y 2.070m2/s del índice de Nash-
Sutcliffe, error en el volumen y error cuadrático medio respectivamente. 

 Análizando el índice de Nash-Sutcliffe en las Validaciones, los mejores resultados 
obtenidos fueron 0.81 con validación temporal en Pajaroncillo y 0.62 con validación 
espacio-temporal a la entrada del embalse Contreras.
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La exacta precipitación no se conoce, sino que su valor se mide con un 
error (grado de incertidumbre asociada) Por ello el tipo de precipitación eserror (grado de incertidumbre asociada). Por ello, el tipo de precipitación es 
más importante que la elección del modelo hidrológico en términos de producir 
simulaciones hidrológicas más robustas. Por otro lado, la metodología de 
estimación de los parámetros involucra una serie de incertidumbres debidas 
principalmente a la cantidad calidad y grado de definición espacial de laprincipalmente a la cantidad, calidad y grado de definición espacial de la 
información básica empleada. Ante, esto, la ventaja del modelo TETIS es 
que se puede corregir en gran medida todos estos errores, calibrando 
los factores correctores del modelo.

La eficacia de los modelos La eficacia de los modelos distribuídosdistribuídos depende de la disponibilidad depende de la disponibilidad 
de los datos de entrada (inputs) => tecnología de sensores de satélite => de los datos de entrada (inputs) => tecnología de sensores de satélite => 

precipitación obtenida por satélite disponible en tiempo realprecipitación obtenida por satélite disponible en tiempo real
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